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MICN-ORDERSPARSE FACTORIZATION fETlfODS FOR ELLIPTIC BOUNDARYVALUEPROBLEM

Jaus fl. Bymsn
Thomas A. Hmnteuffel

Los Ala~m National bboratory
Los AlmmoE, Nli 87545

ABsTRACT

Uc ●re intel,ested in rolving the cpsrse linear
systems, Av = b, that ●rime from finite difference or
finite ●lement approa’metions to partial differential
●quatioufi. H-y iterative methods requi:e solving au
●asier ●pproximate ●quation, Pv ❑ b, on ●a cb
iteration. This is often called preconditioning or
operator splitting 11,2,4,6-9,12-14]. T& methods we
consider factor A ●pproximately into the produc; of
an upper Jnd lower trianp,ular matrix P z LU ❑ A.
These methods ●re called incomplete LU factorization
mrthods and their convergence rate depends on hob-

Wcll P approximates A. We describe some new
●lgorithms to generate ●ccurate LU decompositions
based on the continuity of the nolution v.

1. INTRODUCTION

In this paper we consider iterative numerical
mtthods for tbc soiution of sparse linear mystems of
the form,

Av = h , (1)

that arise in the finiL@ difference or finite element
●pproximation of ● partial differential ●quation
(PDEs) . In these equstionc the vector v of length N
●pproximates the tmooth nolution to ● descritized PDE
defined on ●n underlying n M n npatial mesh. The
smoothness of the nolution will be ●xploited to
de!~ne high order ●pproximate factorization of A.
For ~impllrity we will ●nalyze theseN . n~oblems for
twc-dimensional ●quationn where but the

m?Lhods generalize ●amily to higher dimensions.
11 the matrix P ●pprornimates A, then

nonstationary iterativr ●ethods of the form [151

~v(i+l)=Pv(l)+(i(b-Av(i)) , (2)

can bc used t.’●olve (1.1), The matrin P, called the
prt~orditionin~ mat:i~, in g?nerated by #pproximatins
A by an incomplet.r LU decomposition 12,6,8,9,12-14].
That is,

Ax LDtl-R=p -R, (3)

where L is lower tr:tugultir, IJ i~ diasrmal, U it ●n
upp?t tritngukar matrix and R in the remidual ● rror

matrix. Tb- matricet L ●nd U have unit diatonals.
Theme matrices ● re cholen mo that the remidual mstrix
R is ●Dal] ●d the spproximatint ●yntem PV ■ 6 10
rosier to oolve than Eq. (l). Tha nonzero structurr
of L + U in chonen to bc similar to (if not ●quaI to)
the non8ero otructure of A,

The number of iterations thr ●laoritlm takes to
converge to a fipecified •~~or tole~~nce is relat~~ to

the condition number of P A - K(P A) = x(] - P R).

(The condition Iwbcr is the tatio of the lar~emt to
smmllcmt sin~uimr value of ● matrix, ) Note that the
nn,aller the r~sidual matris is the ●mailer th.
condition number will be ●nd the faoter the method

will conwrge.

Often the iteration can be ●ccelerated using N
conjuLmte gradient [1,3-5,7,8,12], Chcbychc”;
[10,11], or other polynomial acceleration algorithm.
When conjugate Uradient ●cceleration or Chebychrv
●cceleration is used the convergence rate i>

proportional LO the mqumre root of the condition
nwber.

We will gxve # non-rigorous a gumeot on how to
-iestimate the condition number K(P A). We assume P

is clone-lenough to A co that if llA-lll = O(h-o)
then 11P l! = O(h-a), where II-II is the operator
norm induced by the 2-norm ●nd h = l/n is the mesh
spacing. (For Laplace’s ●qu a#ion, we havro= 2.).
When IIRII-=l IIA -PII= O(h ) then the condition
number ~f P A can be approximated by

K(p- lA) = IIP-lAII IIA-lPII

=111 P-lRII Ill - A-lRII

“ [1 + O(h-a) O(hP)][l + O(h-a) O(hP)]=

❑ I + O(hp-a)

❑ ~ + o(N(@)/2)

The condition number of A, K(A) = O(h-a), is
determined by th~ problem beina solved hut tile
condition numb~ r of the residutl matrix can he
reduces by making P
il. if IIRII = ~(h~s clOse ‘OAasposslbl?. Thatthen we wish to m~kr P as
large ● s possible. 1; particular, if ~ > a tnrn the
method will canvergr fmster for larger problems Lhan
rmaller ones.

A standard method for forming L ●nd U is to
perform t complete decompornition and discard fill-irl
[12] or to add the discarded fill-in back to the
diagonal [B,9]. We wish to ●bandon this ●pproach In
favor of treating the ●lements of L, D, and 11 ● s
unknowns and choosing them no that R has cct fain
desirtble propertied,

Since A im ●ssumed ta br thr discritization of
● partial differential operator wc know lhat the
●if-nvecLorm (singular vectorB) ●ssociated slth thr
smalle~t ●iaenvaluea (-insular vislvrs) will lIC
relatively ●mocth. The components of thr err[,r III
th? direction of th~sr ●igcnv~ctars will br tll!, mobi
difficult to Iesalve u~ing iterative mcthod~. For
thim reallrm, wr would like to construct 1’ to
approximate A closely on the diocrete ●nslugu?s of

nmooth functionn, In other words, UP will cha~n? 1’

90 that R iB ●s omall ● n posoibl? on ~m( ~th
fwnctions.

To illuatrat~ thio ●pproach can-ider ttlr
discritizstion of the diffusion convect.ioll cquatlou
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The five-point star second-order ●pproximation
to Eq. (4) often leads LO a finite difference
●pproximation that can be written

,k-1 k k

-1,0 ‘i-l,j + ●O,O ‘i,j ● a 1,0 ‘i+l,j
(5)

k ● k-n
+ ‘0,1 ‘i,j+l = b.0,-1 ‘i,j-l l,j

at ●ach point in the mesh. There vi j is the

solution at (Xi,yj) ●nd is the k-th [k = i + (j - l)n]

element in tbe one dimeomiorral v array.
The matrix A is ~howo in Fi~. 1 snd will be

symmetric (A = AT) if ●
k k+ 1 k k+n

1,0 = ‘-1,0 ●nd ‘0,1 = ao,-l”

— —

o

L

Flgurr 1. The matrix A for thr five point operator.

The ctencil of ● finite difference approxirnatior
can be ●n ●xcell~nt tool to undern&and how the

underlylns mefih, the matrix A, and itb ●pproximation
P arr related. Using notation from Dupont., Ke~dall
●nd Rachford 16] m five point approximation 10 “I)
ledu to ● matrin A dencribed by the stenril in
FIR. 2,

+

k-l
b

k k
-l, C %,c ‘l, C

(x ) (x@’J~(x’+@’J)
~-~ ,::)

( J k-n
xi.:!’,-]

,, ‘0,-1

In the ■iqlest incomplete LJJ decomposition of
A, the matrix L + U has the ●a- nonzero structure
●n A. We shall call this factorization t:s ILU(0)
method ●ince it ham no ● xtr~ nonzero ●lements.

The ILU(0) lYethod
In the ILU(0) methou the lower triangular

matrix L chowm in Fig. 3a, has the stencil shok-n in

Fig. 3.b.
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~\-n
(l,-]
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Figure 3a. The matrix L for the ILIJ(OJ method.

I~k.-n
0,-1

Figure 3.b T!~e stencil fol L.

Th( upper triangular mmtr>x L, bhosll 1n

FiB. G.a, has the stertci: in Fig..h4.b, Thr diagolla]
matrix D had diagonal elrmr,,”q 6 , TIIC UIFIICI1 10I
th~ preconditioning matrix p = L~(l ~B 811,. wII in

Fig. 5.

The coefficimto ●L the nod~n (msh pninto) ● rc
tll~ ●lemerrtb in the k-th, Ik = i t (j - I)n], row of
A.
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The matrix U for the ILU(0) method.
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Figure 4b. The stencil for U.

P:*1

).
Pl,o

k-n+l
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bg-g lin~ar fu~tion of the five uzsknowns 6k,
~k- 1

!? These terns ● re also funci!h%
o!’;~~e~k?l’ul”b}” 6, 1, ●nd u which we shall assume
to be chosen ●lready.

Si.lce there ● re seven stencil poin~fi it will
not be possible in general to nake the k row of R
identically zero. We may, however, choose the
parameters so ●s to mske the stencil zero on the
points associated with the stencil of A, This
corresponds to the methods in [IO]. If we choose
the UZIknowns so that the product of R times a
constant vector is zero we trave lost only one degree
of freedom. One choice of the remaining four
corresponds to the method described in [8]. suppose
we use two more degrees of freedom to make the
product Rv = O when v corresponds to .s function that
is constsnt in x ●nd linear in y, or when v
corresponds to a function that is constant in y and
linear in x; then, thsrr are two degrees of freedom
left. Ii v corresponds to a function with t~o
continuous derivatives each term of the product ftv
will be O(h ).

The remaining two degrees of freedom are
insufficient t~ ❑ake the product zero on the
qua~ratics ●nd bilinear functions, consequently
O(h ) is the best we may achieve. However, the tw
degrees of freedoffi aiay be ~Ced t~ reduce the
size of the ●lements ir. the kLn -OW of R. If we
choose to ❑inimize the sum of the squares the
unknowns may be found by solving a 5 x 7 constrained
least squares problem.
of freedom might be t?~~~~ ~~ ‘f ‘hese degrees- U as small as
possible ●nd thus P more nearly syuarretric.

The entire procedure involves passing
sequentially through the grid points ~nd chuosing
the flv? unknowns so that (Rv),. = 0(!] ). At ●ach

grid-poiot, the equations involv~ elements of L, D,
and L! that were chosen ● t previou~ 8rid-points, and
the five elements mentioned above. This
preconditioning has b-en shown to be superior to
incomplete Cholesky [12] or modified incomplete
Cholesky [8] on test problems, However, what w
rea ly seek is ● factorization for wh]c)) (Rv)k =

J
O(h ). If the ●lements of R remain bounded as h AS
reduced to zero, thit would yield IIRvII = 0(11-)
whenever u corr bponds to a smooth frsnctl~n.

-f
The

condition of P A would be independent of h. For
this we need ● lar8er stencil.

The Compnct IIJl(l) tfethod

A more ●rcurste incomplete factorization vf A
can be formed by allowlng L ●nd U to have norrzrru
elements in the positions other than those whrre A
is nonzero. It’ both L ●nd U have onc ● xtra fionzc.r,,
●lement then the method i. called an ILL(1) method.
There are sevetsl ch~ictis 4s to whers- this extris
●lement can be added. To reduce thv ●xtrapcl.s:loll
error we chose to add this erstra C:rm?nt surh th.~t
the stencil for P = LDL! will be ● s close to A as
posoible. This rhoice, called thr compact lL\’(~1
method, has an L ●nd U with the nonzero ~tructure
shown in Fig, 6. (The factorization dvscrlbtd lrl

Figure 5. The rterrcil for the preconditioning ●atrix
p R LDL~,

This will ●lso be thr stencil
Each entry in the k\’# the residualretrim R = P-A. row of R will
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~igure ba. The nonzero structure for L for the
compact ILU(I) method.

k
‘1,1

squares of the elements of R or to promote the
s~try of P. These conditions yield a 9 x 7
constrained least squares problem. We ●ay in this
fasion pass sequentially throaaah the mesh choosing
L, D, and U in such ● way that if v corresponds to a
function w“th three continuous derivatives then3
(ffv) =O(h ).

%fortunately, the size of the ●lementsof R
groys ●s h + O with the net result that Iiltvll =
O(b ). If instead we um
freedom to make (Rv)k

$ Fnly three degrees of
= O(h ) ●nd the remaining four

to reduce the size of the ●lements of R, a
preconditionisaa results that is ●aain superior to lC
●nd tflC. The other four dearees of freedom may be
used to promote symnetry sod, in fact, P can be made
s~etrlc except near two of the four boundaries.

The ILU(2) ●nd ILU(3) Hethodn

Let us consider ●ven larger stencils in t e
!lhope that one may be found for which [IRvII = O(h )

for sufficiently smooth v. Clearly, such a stencil
exists becauae ●xact decomposition yields Rv = O.
In the ILU(2) method we ●dd one more point to the
stencil of L ,snd U in the positions shown in Fig. 8.

k
U],(1

Figure 61!. The nonzero structure for U for the

compact lLU(l) method.

Their product P = LDL! has the nonzero structure shown
in l~g. 7, as dors the residual mrntrix R.

FiRure 7,

With

Thr nonzero structure for P = LDU for the
compact ILU(l] mettod.

thin stencil we have seven unknowns ●nd
ninr stencil point8. A8ain R cannot be made
identically Zrro , Suppose v corresponds to ●

quadratic2 polynomial;2 that is, v(x,y) E pO + p x +
dLet us choose the ●lem nts

~?yR’~~x&’’’’~v+=p#yf~r ..y.aach polynomial, This
r~duirea 6 degr?et of freedom, The remaining degree
oi freedom may be used to minimize the sums of the

Figure

Fi8ure

~k-1
-1,0

—. . .

~k-n-l
-1,-1

L

~k-n
0,-1

~k-n+ 1

1.-1

8a . The stencil for L for the nine point
ILU(2) method.

k
‘-1,1 u :

,1

1!
“],1

8b . The stencil for U for thr nlnr point

ILU(2) method,

The stencil for P IC LDU ia nhown iu tlR, 9.



Figure 9. The stencil for P = LDU for the nine point ILL!(2) method.

Using this same strategy we can ●dd three extra
points to the basic IL.U(0) stencils. In this ILU(3)
method there are 11 unknowns snd 15 stencil points.
Recall that only six degrees ~f treedom are required

in order to make (Rv)k = O(h ) on smooth functions.
The remaining degrees of freedom can be used to
control the size of the ●lements of R.

s~
In this psper we have presented a hueristic

motivation for choosing the ●lements of a family of
incomplete factorization. Members of this family
have been shown to be numerically sverior to the
IC(12) and MIC(8) factoiizations. However, the work
required to form the factorization is greater and
not ●asily vectorized. If ●,$actorization could be
found for which IIRvII = O(h ) on smooth functions
t’.?n the extra work could be justified. Numerical
results for the ILU(2) ●nd ILU(3) methods are
incomplete but show great promise.
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